Recursive Definition of a Determinant

Recall

$$
\begin{aligned}
& \text { Example 1. Compute the determinant of the following matrix. } \\
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& \operatorname{det} A=a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right] \uparrow a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13}
\end{aligned}
$$

where A_{11}, A_{12}, and A_{13} are obtained from A by deleting the first row and one of the columns.
For any $n \times n$ (square) matrix A, let $A_{i j}$ denote the submatrix obtained by deleting the ith row and $j^{\text {th }}$ column of
A. For example,

$$
A=\left[\begin{array}{llll}
1 & 0 & 5 & 6 \\
2 & 4 & 0 & 8 \\
6 & 5 & 7 & 4 \\
1 & 3 & 5 & 4
\end{array}\right], \quad A_{32}=\left[\begin{array}{lll}
1 & 5 & 6 \\
2 & 0 & 8 \\
1 & 5 & 4
\end{array}\right]
$$

Definition (Determinant)
For $n \geq 2$, the determinant of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is the sum of n terms of the form $\pm a_{1 j} \operatorname{det} A_{1 j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1 n}$ are from the first row of A. In symbols,

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j}
\end{aligned}
$$

Given $A=\left[a_{i j}\right]$, the (i, j)-cofactor of A is the number $C_{i j}$ given by

$$
\begin{equation*}
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} \tag{*}
\end{equation*}
$$

Then

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

This formula is called a cofactor expansion across the first row of A.

The plus or minus sign in the (i, j)-cofactor depends on the position of $a_{i j}$ in the matrix, regardless of the sign of $a_{i j}$ itself. The factor $(-1)^{i+j}$ determines the following checkerboard pattern of signs:

$$
\left[\begin{array}{cccc}
+ & - & + & \cdots \\
- & + & - & \\
+ & - & + & \\
\vdots & & & \ddots
\end{array}\right]
$$

Theorem 1. The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the i th row using the cofactors in (f) is

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n}
$$

The cofactor expansion down the j th column is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

First we expand along the second row, then expand along either the third row or the second column of the remaining matrix

$$
\begin{aligned}
\operatorname{det} A & =3 \cdot(-1)^{2+3} \cdot\left|\begin{array}{ccc}
1 & -2 & 2 \\
2 & -4 & 5 \\
2 & 0 & 5
\end{array}\right| \\
& =(-3)\left(2 \cdot(-1)^{3+1} \cdot\left|\begin{array}{cc}
-2 & 2 \\
-4 & 5
\end{array}\right|+5 \cdot(-1)^{3+3} \cdot\left|\begin{array}{ll}
1 & -2 \\
2 & -4
\end{array}\right|\right)
\end{aligned}
$$

$$
=(-3)(2 \cdot(-10+8)+5 \cdot(0))=(-3) \cdot(-4)=12 .
$$

or

$$
\begin{aligned}
& =(-3)\left((-2) \cdot(-1)^{1+2} \cdot\left|\begin{array}{ll}
2 & 5 \\
2 & 5
\end{array}\right|+(-4)(-1)^{2+2} \cdot\left|\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right|\right) \\
& =(-3)(0+(-4) \cdot 1)=12 .
\end{aligned}
$$

Theorem 2. If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the main diagonal of A.
Example 3. Compute the determinant.

$$
\text { By The 2, } \operatorname{det} A=3 \times(-2) \times 3 \times(-3)=54
$$

$$
\text { Recall } \text { upper triangular }\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
0 & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right] \text {. }
$$

$$
\text { lower triangular. }\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Example 4. Explore the effect of an elementary row operation on the determinant of a matrix. State the row operation and describe how it affects the determinant.

$$
\begin{aligned}
& \text { (i) }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],\left[\begin{array}{ll}
c & d \\
a & b
\end{array}\right] \\
& \left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c, \quad\left|\begin{array}{ll}
c & d \\
a & b
\end{array}\right|=b c-a d=-(a d-b c)
\end{aligned}
$$

The row operation swaps rows 1 and 2 of the matrix, and the sign of the determinat is reversed.

$$
\begin{aligned}
& \text { (ii) }\left[\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right],\left[\begin{array}{cc}
3 & 2 \\
5+3 k & 4+2 k
\end{array}\right] \\
& \left|\begin{array}{ll}
3 & 2 \\
5 & 4
\end{array}\right|=12-10=2 \\
& \left|\begin{array}{cc}
3 & 2 \\
5+3 k & 4+2 k
\end{array}\right|=3 \cdot(4+2 k)-2 \cdot(5+3 k)=12+6 k-10-6 k=2
\end{aligned}
$$

The row operation replaces row 2 by $k \times R 1+R 2$, and the determinant is unchanged.

Exercise 5. Let $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$. Write $5 A$. Is $\operatorname{det} 5 A=5 \operatorname{det} A$?

$$
5 A=\left[\begin{array}{ll}
15 & 5 \\
20 & 10
\end{array}\right]
$$

No. $\operatorname{det} 5 A=150-100=50, \quad \operatorname{det} A=6-4=2$

$$
\text { So } \operatorname{det} 5 A=5^{2} \cdot \operatorname{det} A
$$

Exercise 6. Let $\mathbf{u}=\left[\begin{array}{l}3 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Compute the area of the parallelogram determined by $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$, and $\mathbf{0}$, and compute the determinant of $\left[\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right]$. How do they compare? Replace the first entry of \mathbf{v} by an arbitrary number x, and repeat the problem. Draw a picture and explain what you find.

ANS. The area of the parallelogram determined by $\mathbf{u}=\left[\begin{array}{l}3 \\ 0\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{u}+\mathbf{v}$, and $\mathbf{0}$ is 6 , since the base of the parallelogram has length 3 and the height of the parallelogram is 2 . By the same reasoning, the area of the parallelogram determined by
$\mathbf{u}=\left[\begin{array}{l}3 \\ 0\end{array}\right], \mathbf{x}=\left[\begin{array}{l}x \\ 2\end{array}\right], \mathbf{u}+\mathbf{x}$, and $\mathbf{0}$ is also 6 .

Also, note that $\operatorname{det}\left[\begin{array}{ll}\mathbf{u} & \mathbf{v}\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]=6$, and $\operatorname{det}\left[\begin{array}{ll}\mathbf{u} & \mathbf{x}\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}3 & x \\ 0 & 2\end{array}\right]=6$. The determinant of the matrix whose columns are those vectors that define the sides of the parallelogram adjacent to $\mathbf{0}$ is equal to the area of the parallelogram

